

Security of Select Agents at Bioscience Facilities

Reynolds M. Salerno, Ph.D. Sandia National Laboratories US Department of Energy

Biosafety vs. Biosecurity

Biosafety

- Objective: reduce or eliminate accidental exposure to or release of potentially hazardous agents
- Strategy: implement various degrees of laboratory "containment" or safe methods of managing infectious materials in a laboratory setting

Biosecurity

- Objective: protect against theft or diversion of select agents
- Strategies
 - Define risk by evaluating probabilities and consequences
 - Protect defined assets against defined threats
 - Apply a graded protection approach
 - Integrate security technologies and procedures
 - · Impact operations only to the level required

Need to Secure Select Agents

- Aim of biosecurity is to mitigate BW threat at the source
 - Prevent terrorists or proliferant states from acquiring select agents from government, commercial, or academic facilities
- Securing select agents is an important element of comprehensive BW nonproliferation programs
 - Cannot prevent BW terrorism or proliferation
 - Must be augmented by other national mechanisms

Challenges to Securing Select Agents

- Dual-use characteristics
 - Valuable for many legitimate, defensive, and peaceful commercial, medical, and research applications
- Nature of the material
 - Living and self-replicating organisms
 - Used in very small quantities
 - Cannot be reliably quantified
 - Exist in many different process streams in facilities
 - Contained biological samples are virtually undetectable
- Laboratory culture
 - Biological research communities not accustomed to operating in a security conscious environment

Biosecurity Cost Benefit Considerations

- Bioscience facilities are not unique repositories
 - Most agents can be isolated from nature
 - Many similar collections of agents exist worldwide
- Relatively few agents can be easily grown, processed, weaponized, and successfully deployed while maintaining virulence/toxicity
 - Very few agents used as a weapon could cause mass human, animal, or plant casualties
 - Not all agents equally attractive to adversaries
- Need a methodology to make informed decisions about how to design an effective and efficient biosecurity system

Biosecurity Methodology

- Qualitative risk and threat assessment is the essential first step
 - Process should include scientists, technicians, managers, security professionals, and law enforcement (counterterrorism) experts
- Asset identification and prioritization
 - Consequences of diversion and adversary attractiveness
- Threat identification and prioritization
 - How would an adversary steal the defined assets?
- Risk and threat assessments establish design parameters and protection principles

Asset Identification and Prioritization

Primary consequence

- Loss could lead to national security event (bioterrorism)
- Certain biological agents

- Loss could assist in achieving a primary consequence or access to a primary asset
- Certain information related to select agents

- Loss could affect operations
- Certain facilities, equipment, etc.

Yersinia pestis

Bacillus anthracis

Fermentation vessel

Threat Identification

- Adversary categories
 - Insider with authorized access
 - Invited outsider(s) visitor
 - Outsider(s) with limited access and system knowledge
 - Outsider(s) with no access and general knowledge
 - Collusion between an insider and an outsider
- What will the adversaries aim to do?
 - Steal agents, steal information, disperse agents, destroy/deface facility, steal equipment, etc.
- How will the adversaries perpetrate the event?
 - Alone or in a group? Armed or unarmed? Covert or overt?

Risk Prioritization

Protect against high risk scenarios

 Develop incident response plans for medium and low risk scenarios

United States Delegation BWC Experts Group Meeting

Generic Biosecurity Design Parameters

- Highest risk scenarios
 - Insider, visitor, or outsider with limited access attempting to steal select agents covertly
- High risk scenarios
 - Insider, visitor, or outsider with limited access attempting to steal select agent-related information covertly
- Medium risk scenarios
 - Small outsider groups that would aim to destroy or deface the facility
- Terrorist commando assault unlikely
 - Agents available elsewhere
 - Overt attack using force would signal authorities to take medical countermeasures

Generic Biosecurity Protection Principles

- Personnel Reliability
- Physical Security
- Information Technology Security
- Material Control and Accountability
- Material Transfer Security
- Program Management

Typically excludes substantial perimeter systems and armed guard forces

Personnel Reliability

- Allow access only to those individuals who have
 - Legitimate need to handle select agents
 - Appropriate training in biosafety, containment, and security procedures
- Conduct background investigations on employees
- Establish visitor interaction procedures
 - Screening, badging, and escorting
- Report suspicious activity

Physical Security

- Implement systems to deter, detect, and respond to unauthorized attempts to gain access to select agents
- Establish graded protection areas with
 - Intrusion detection
 - Access controls and transaction recording
 - Alarm assessment capabilities
 - Physical barriers and delay systems
 - Law enforcement response capabilities

Material Control and Accountability

- Develop systems to document
 - What materials exist in a certain facility
 - Where they are located
 - Who is responsible for them
 - Who has access to them
- Avoid trying to apply quantitative material-balance inventory accounting principles

Material Transfer Security

- Document, account for, and control select agents when they are moving between protected areas within a facility
- Receive authorization and monitor external transfers between registered facilities before, during, and after transport

Information Technology Security

- Control access to sensitive information related to select agents
- Establish policies and implement technologies for handling, using, and storing paper-based, telephonic, photographic, and electronic media

Program Management

- Provide policy oversight and implementation of the biosecurity program
- Maintain documentation of
 - Security plan
 - Incident response plan
 - Security training program
 - Self-assessment and auditing program

Summary

- Necessary to take steps to reduce the likelihood that select agents could be stolen from bioscience facilities
- Critical that these steps are designed specifically for biological materials and research so that the resulting system will balance science and security concerns